نظرکاوی، زیرشاخهای از دادهکاوی است که به حوزه پردازش زبان طبیعی وابسته بوده و با گسترش تجارت الکترونیکی، به یکی از زمینههای محبوب در بازیابی اطلاعات تبدیل شده است. این حوزه بر زیرمجموعههای مختلفی مانند تشخیص قطبیت، استخراج جنبه و تشخیص هرزنظر تمرکز دارد. اگرچه وابست چکیده کامل
نظرکاوی، زیرشاخهای از دادهکاوی است که به حوزه پردازش زبان طبیعی وابسته بوده و با گسترش تجارت الکترونیکی، به یکی از زمینههای محبوب در بازیابی اطلاعات تبدیل شده است. این حوزه بر زیرمجموعههای مختلفی مانند تشخیص قطبیت، استخراج جنبه و تشخیص هرزنظر تمرکز دارد. اگرچه وابستگی نهانی بین این زیرمجموعهها وجود دارد اما طراحی یک چارچوب جامع شامل تمامی این موارد، بسیار چالشبرانگیز است. پژوهشهای موجود در این حوزه اکثراً بر روی زبان انگلیسی بوده و برای تحلیل احساس، بدون توجه به زیرمجموعههای تأثیرگذار، فقط بر روی حالت باینری تمرکز داشتهاند. همچنین استفاده از یادگیری ماشینی برای دستهبندی نظرات بسیار رایج است و در سالهای اخیر، اغلب پژوهشها از یادگیری عمیق با اهداف متفاوت استفاده کردهاند. از آنجا که در ادبیات پژوهشی به چارچوبی جامع با تمرکز بر زیرمجموعههای تأثیرگذار کمتر پرداخته شده است، از این رو در مقاله حاضر با استفاده از راهکارهای نظرکاوی و پردازش زبان طبیعی، چارچوب جامع مبتنی بر یادگیری عمیق با نام RSAD که پیشتر توسط نویسندگان این مقاله در حوزه نظرکاوی کاربران فارسی زبان توسعه داده شده بود برای تشخیص قطبیت در دو حالت باینری و غیر باینری جملات با تمرکز بر سطح جنبه بهبود داده شده که تمام زیرمجموعههای لازم برای تحلیل احساس را پوشش میدهد. مقایسه و ارزیابی RSAD با رویکردهای موجود، نشاندهنده استحکام آن است.
پرونده مقاله
امروزه از ساختمانهای اداری و مسکونی گرفته تا ابنیه تاریخی و ساختمانهای حساس و پراهمیت، نیاز به مراقبت و پایش ویژه دارند. بدیهی است چنین پایشی دارای هزینه، خطا و چالشهای بسیاری میباشد. شبکههای حسگر سیمی به دلایلی نظیر هزینه کمتر، کابردهای گستردهتر و نصب آسان در موا چکیده کامل
امروزه از ساختمانهای اداری و مسکونی گرفته تا ابنیه تاریخی و ساختمانهای حساس و پراهمیت، نیاز به مراقبت و پایش ویژه دارند. بدیهی است چنین پایشی دارای هزینه، خطا و چالشهای بسیاری میباشد. شبکههای حسگر سیمی به دلایلی نظیر هزینه کمتر، کابردهای گستردهتر و نصب آسان در موارد زیادی در حال جایگزینی با شبکههای حسگر بیسیم هستند. در سازههای مختلف بسته به وضعیت و نوع سازه، مواردی نظیر مصرف انرژی، دقت و همچنین تحمل اشکال در از بین رفتن گرههای حسگر حایز اهمیت میباشند. بالاخص که با استفاده از شبکههای حسگر بیسیم، موارد یادشده، چالشهایی دایمی هستند که با وجود تحقیقات صورتگرفته، ظرفیت بهبودیافتن دارند. ایده اصلی مقاله پیش رو عبارت است از استفاده رویکردی نوآورانه در به کارگیری از فرایند تصمیمگیری مارکوف و حسگرهای بیدارشونده، تا به این وسیله هزینه و خطا در پایش سازههای پایا و نیمهپایا را نسبت به روشهای فعلی کاهش دهیم و بر اساس صورت مسئله، مزایایی را در پیادهسازی و اجرا به همراه داشته باشیم. بنابراین نوآوری روش پیشنهادی، استفاده از فرایند تصمیمگیری مارکوف و حسگرهای بیدارشونده به منظور ارائه روشی نوین و بهینهتر نسب به روشهای موجود به صورت اختصاصی برای پایش سلامت سازهای سازههای پایا و نیمهپایا است. این رویکرد در قالب شش گام تشریح شده است و در مقابل، روشهای پرکاربردی مورد مقایسه قرار گرفتهاند بدین گونه که در محیط شبیهسازی CupCarbon، با سنجههای مختلفی آزمایش و شبیهسازی شدهاند. نتایج نشان میدهد راهکار پیشنهادی در مقایسه با راهکارهای مشابه در موارد کاهش مصرفی انرژی از 11 تا 70 درصد، تحملپذیری اشکال در تبادل پیامها از 10 تا 80 درصد و همچنین در مبحث هزینه کل از 93 تا 97 درصد بهبود به دست آورده است.
پرونده مقاله
الگوریتم ماشین بردار پشتیبان یکی از الگوریتمهای مشهور و با کارایی بالا در یادگیری ماشین و کاربردهای مختلف است. از این الگوریتم تا کنون نسخههای متعددی ارائه شده که آخرین نسخه آن ماشینهای بردار پشتیبان دوقلوی مربعات حداقلی فازی میباشد. اغلب کاربردها در دنیای امروز دار چکیده کامل
الگوریتم ماشین بردار پشتیبان یکی از الگوریتمهای مشهور و با کارایی بالا در یادگیری ماشین و کاربردهای مختلف است. از این الگوریتم تا کنون نسخههای متعددی ارائه شده که آخرین نسخه آن ماشینهای بردار پشتیبان دوقلوی مربعات حداقلی فازی میباشد. اغلب کاربردها در دنیای امروز دارای حجم انبوهی از اطلاعات هستند. از سویی دیگر یکی از جنبههای مهم دادههای حجیم، جریانیبودن آنها میباشد که باعث شده است بسیاری از الگوریتمهای سنتی، کارایی لازم را در مواجهه با آن نداشته باشند. در این مقاله برای نخستین بار نسخه افزایشی الگوریتم ماشینهای بردار پشتیبان دوقلوی مربعات حداقلی فازی، در دو حالت برخط و شبه برخط ارائه شده است. برای بررسی صحت و دقت الگوریتم ارائهشده دو کاربرد آن مورد ارزیابی قرار گرفته است. در یک کاربرد، این الگوریتم بر روی 6 دیتاست مخزن UCI اجرا شده که در مقایسه با سایر الگوریتمها از کارایی بالاتری برخوردار است. حتی این کارایی در مقایسه با نسخههای غیر افزایشی نیز کاملاً قابل تشخیص است که در آزمایشها به آن پرداخته شده است. در کاربرد دوم، این الگوریتم در مبحث اینترنت اشیا و به طور خاص در دادههای مربوط به فعالیت روزانه به کار گرفته شده است. طبق نتایج آزمایشگاهی، الگوریتم ارائهشده بهترین کارایی را در مقایسه با سایر الگوریتمهای افزایشی دارد.
پرونده مقاله
امروزه با توسعه بسیار سریع فناوریهای نوین در حوزه اینترنت اشیا و شبکههای هوشمند، مفهوم شبکههای حسگر بیسیم بیش از هر زمان دیگری مورد توجه مراکز تحقیقاتی قرار گرفته است. در سالهای اخیر، پیدایش این شبکهها با ساختار متراکم، بر اهمیت به کارگیری فناوریهای مخابراتی از ج چکیده کامل
امروزه با توسعه بسیار سریع فناوریهای نوین در حوزه اینترنت اشیا و شبکههای هوشمند، مفهوم شبکههای حسگر بیسیم بیش از هر زمان دیگری مورد توجه مراکز تحقیقاتی قرار گرفته است. در سالهای اخیر، پیدایش این شبکهها با ساختار متراکم، بر اهمیت به کارگیری فناوریهای مخابراتی از جمله فناوری فراپهن باند با قابلیت اطمینان بالا، کاربرد صنعتی و همچنین امنیت ارتباطی مناسب افزوده است. اما همچنان نگرانیهای بسیاری در ارتباط با میزان تداخل درون شبکهای به ویژه ناشی از خطوط گسسته طیفی نامطلوب در این فناوری مطرح هستند و بنابراین ارائه یک راهکار بهینه برای حذف تداخل درون شبکه و کنترل طیف توان و سپس تعریف ساختارهای فرستنده- گیرنده مطلوب البته با در نظر گرفتن حساسیتهای بالا نسبت به مسأله سنکرونسازی در شبکههای حسگری بیسیم مبتنی بر تکنولوژی فراپهن باند ضروری است. این اهداف در تحقیق کنونی با اعمال استراتژی بهینه طیفی در مدل سیگنال، ساختار حسگر فرستنده و سپس ترسیم ساختارهای حسگر گیرنده بهینه و یا زیربهینه دنبال میشوند که نتایج به دست آمده بیانگر بهبود عملکرد ارتباطات در شبکههای حسگر بیسیم است.
پرونده مقاله
اینترنت اشیا در حال تبدیلشدن به بزرگترین پلتفرم محاسباتی است و هر روزه شاهد افزایش تعداد دستگاههای این محیط هستیم. علاوه بر این، بیشتر اشیای این زیرساخت دارای محدودیتهای محاسباتی و حافظه میباشند و قادر به انجام عملیات پیچیده محاسباتی نیستند. این محدودیتها در بیشتر چکیده کامل
اینترنت اشیا در حال تبدیلشدن به بزرگترین پلتفرم محاسباتی است و هر روزه شاهد افزایش تعداد دستگاههای این محیط هستیم. علاوه بر این، بیشتر اشیای این زیرساخت دارای محدودیتهای محاسباتی و حافظه میباشند و قادر به انجام عملیات پیچیده محاسباتی نیستند. این محدودیتها در بیشتر روشهای احراز هویت سنتی نادیده گرفته شدهاند. در ضمن در روشهای جدید احراز هویت این محیط، به مسأله مقیاسپذیری توجه زیادی نشده و بنابراین نیاز به یک احراز هویت سبکوزن، مقیاسپذیر احساس میشود. در این مقاله یک پروتکل احراز هویت سبکوزن ارائه شده که اشیا در گروههای مختلف قرار میگیرند و در هر گروه یک گره مدیر در نظر گرفته میشود و به عنوان نماینده از طرف بقیه گروه، عملیات احراز هویت را انجام میدهد. بنابراین به صورت گروهی احراز هویت انجام میگردد و پروتکل مقیاسپذیری بالای دارد. روش پیشنهادی هزینه محاسباتی گره و سرور را کاهش میدهد و حریم خصوصی را از طریق گمنامی گرهها فراهم میآورد. رازداری رو به جلو را بدون استفاده از رمزگذاری آسنکرون و همچنین توافق بر روی کلید جلسه را دارد. از ابزار AVISPA برای تأیید امنیتی روش پیشنهادی استفاده شده است. در روش ما، هزینه زمانی احراز هویت در گره و سرور نسبت به روشهای بررسیشده به ترتیب 8/7% و 5/3% کاهش یافته است.
پرونده مقاله
کارایی سیستمهای بازشناسی کنشهای انسانی به استخراج بازنمایی مناسب از دادههای ویدئویی وابسته است. در سالهای اخیر روشهای یادگیری عمیق به منظور استخراج بازنمایی فضایی- زمانی کارا از دادههای ویدئویی ارائه شده است، در حالی که روشهای یادگیری عمیق در توسعه بعد زمان، پیچ چکیده کامل
کارایی سیستمهای بازشناسی کنشهای انسانی به استخراج بازنمایی مناسب از دادههای ویدئویی وابسته است. در سالهای اخیر روشهای یادگیری عمیق به منظور استخراج بازنمایی فضایی- زمانی کارا از دادههای ویدئویی ارائه شده است، در حالی که روشهای یادگیری عمیق در توسعه بعد زمان، پیچیدگی محاسباتی بالایی دارند. همچنین پراکندگی و محدودبودن دادههای تمایزی و عوامل نویزی زیاد، مشکلات محاسباتی بازنمایی کنشها را شدیدتر ساخته و قدرت تمایز را محدود مینماید. در این مقاله، شبکههای یادگیری عمیق فضایی و زمانی با افزودن سازوکارهای انتخاب ویژگی مناسب جهت مقابله با عوامل نویزی و کوچکسازی فضای جستجو، ارتقا یافتهاند. در این راستا، سازوکارهای انتخاب ویژگی غیر برخط و برخط، برای بازشناسی کنشهای انسانی با پیچیدگی محاسباتی کمتر و قدرت تمایز بالاتر مورد بررسی قرار گرفته است. نتایج نشان داد که سازوکار انتخاب ویژگی غیر برخط، منجر به کاهش پیچیدگی محاسباتی قابل ملاحظه میگردد و سازوکار انتخاب ویژگی برخط، ضمن کنترل پیچیدگی محاسباتی، منجر به افزایش قدرت تمایز میشود.
پرونده مقاله
تحلیل محتوای اخبار منتشرشده، یکی از مسایل مهم در حوزه بازیابی اطلاعات است. امروزه تحقیقات زیادی برای تحلیل تکتک مقالات خبری انجام شده است، در حالی که اکثر رویدادهای خبری به شکل چندین مقاله مرتبط به هم به طور مکرر در رسانهها منتشر میشوند. تشخیص رویداد، وظیفه کشف و گر چکیده کامل
تحلیل محتوای اخبار منتشرشده، یکی از مسایل مهم در حوزه بازیابی اطلاعات است. امروزه تحقیقات زیادی برای تحلیل تکتک مقالات خبری انجام شده است، در حالی که اکثر رویدادهای خبری به شکل چندین مقاله مرتبط به هم به طور مکرر در رسانهها منتشر میشوند. تشخیص رویداد، وظیفه کشف و گروهبندی اسنادی را دارد که رویدادی یکسان را شرح میدهد و با ارائه یک ساختار قابل درک از گزارشهای خبری، هدایت بهتر کاربران در فضاهای خبری را تسهیل میکند. با رشد سریع و روزافزون اخبار برخط، نیاز به ایجاد موتورهای جستجو برای بازیابی رویدادهای خبری به منظور تسهیل جستجوی کاربران در این فضاهای خبری بیش از پیش احساس میشود. فرض اصلی تشخیص رویداد بر این است که به احتمال زیاد کلمات مرتبط به یک رویداد یکسان در دنیای واقعی، در اسناد و پنجرههای زمانی مشابه ظاهر میشوند. بر همین اساس ما در این تحقیق روشی گذشتهنگر و ویژگیمحور پیشنهاد میکنیم که کلمات را بر اساس ویژگیهای معنایی و زمانی گروهبندی میکند. سپس از این کلمات برای تولید یک بازه زمانی و توصیف متنی قابل درک برای انسان استفاده میکنیم. ارائه یک معماری مناسب و استفاده مؤثر از خوشهبندی جهت بازیابی رویدادها و همچنین تشخیص مناسب زمان رویداد، از نوآوریهای این پژوهش به شمار میروند. روش پیشنهادی روی مجموعه داده AllTheNews که تقریباً شامل دویست هزار مقاله از ۱۵ منبع خبری در سال 2016 میباشد ارزیابی شده و با روشهای دیگر مقایسه گردیده است. ارزیابیها نشان میدهد که روش پیشنهادی در دو معیار دقت و یادآوری نسبت به روشهای پیشین عملکرد بهتری دارد.
پرونده مقاله