In this paper, we present a new efficient method based on local binary pattern descriptor, for face recognition. Because, the calculations in Local binary pattern are done between two pixels values, so, small changes in the binary pattern affect its performance. In this
More
In this paper, we present a new efficient method based on local binary pattern descriptor, for face recognition. Because, the calculations in Local binary pattern are done between two pixels values, so, small changes in the binary pattern affect its performance. In this paper, a new local average binary pattern descriptor is presented based on cellular learning automata and evolutionary computation (CLA-EC). In the proposed method, first, the LABP operator are used to extract uniform local binary patterns from face images; it should be noted that, in LABP operator to obtain more robust feature representation, many sample points has been used. Then, the best subset of patterns found by CLA-EC methods, and the histogram of these patterns is obtained. Finally, support vector machine is used for classification. The results of experiment on FERET data base show the advantage of the proposed algorithm compared to other algorithms.
Manuscript profile