تشخیص زاویه قرارگیری شخص در تصویر با استفاده از اطلاعات کانتوری
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه صنعتی شاهرود
2 - دانشگاه صنعتی شاهرود
کلید واژه: اطلاعات کانتوری شخص خوشهبندی سلسلهمراتبی سیستمهای نظارتی,
چکیده مقاله :
در بسیاری از کاربردها از جمله کاربردهای نظارتی، حالت و زاویه قرارگیری شخص نسبت به دوربین از اطلاعات مهم میباشد. این اطلاعات میتواند در ارزیابی رفتاری شخص مورد استفاده قرار گیرد. از دشواریهای این تشخیص میتوان به کیفیت پایین دوربینهای نظارتی، نویز و پسزمینههای پیچیده در تصویر اشاره نمود. در روشهای موجود برای تشخیص زاویه از ویژگیهایی نظیر هیستوگرام گرادیانهای جهتی استفاده میشود. در این توصیفگر محاسبه هیستوگرامها بر اساس نواحی محلی انجام میگیرد که دارای نقاط ضعفی در تشخیص زاویه میباشد. یکی از اطلاعات مفید که میتواند در تشخیص زاویه مورد استفاده قرار گیرد لبههای احاطهکننده یک شیء در تصویر است که بدان کانتور شیء اطلاق میگردد. در این مقاله تعمیمی از کانتور ارائه میشود که به کمک آن میتوان به صورت سلسلهمراتبی تخمینی از کانتور محاطشده به تصویر شخص را ارائه داد. این کانتورها از روی یک مدل سهبعدی انسان تولید میشوند. کانتور تخمین زده شده همانند یک ویژگی سطح بالا در کنار ویژگیهای سطح پایین نظیر هیستوگرام گرادیانهای جهتی به عنوان ویژگی نهایی در نظر گرفته میشود. در تولید این ویژگی از ترکیب خطی چندین نوع کانتور مربوط به بخشهای مختلف بدن استفاده شده است. به منظور نشاندادن تأثیر ویژگی جدید در تشخیص زاویه، کلاسبند ماشین بردار پشتیبان با استفاده از ترکیب دو ویژگی بالا آموزش داده شده و سپس بر روی مجموعه دادههای VIPeR مورد ارزیابی قرار گرفته است. نتایج آزمایشات انجامشده نشان میدهد که استفاده از ویژگی ارائهشده، دقت تشخیص زاویه را حدود 4% بهبود میبخشد.
Pose and orientation of a person relative to the camera are the important and useful information in many applications, including surveillance systems. This information can be used in the behavior analysis of the person. Low quality of the recorded surveillance images, noisy data and cluttered backgrounds are some of the difficulties in this task. In the existing methods, histogram of orientation gradient (HOG) is used to estimate the orientation. The local properties of HOG is a weakness for orientation estimation. The edge surrounding the object, namely contour, is a useful information for orientation estimation. In this paper we present a general form of a contour. This hyper contour helps us to find the best contour which is matched to image of the person in a hierarchical fashion. These contours generated from a human 3D model. The matched contour as a high-level feature is combined with the low-level feature such as HOG, and considered as the final feature. The proposed feature is a linear combination of several types of contours with respect to different regions of the body. To show the impact of the proposed feature on orientation estimation, a support vector machine is trained on a hybrid feature space and then is evaluated on VIPeR dataset. The experimental results show that the accuracy of the orientation estimation is improved about 4% by using the extended feature.