طراحی کنترلکننده بدون سنسور عصبی- فازی تطبیقی برای موتور سنکرون مغناطیس دایم
سعید زرگانی
1
(
گروه مهندسی برق، پردیس صنعتی شهدای هویزه، دانشگاه شهید چمران اهواز، اهواز، ایران
)
ناصر عرفانی مجد
2
(
گروه مهندسی برق، پردیس صنعتی شهدای هویزه، دانشگاه شهید چمران اهواز، اهواز، ایران،
)
کلید واژه: موتور سنکرون مغناطیس دایم, کنترل کننده عصبی- فازی تطبیقی, کنترل میدان-گرای بدون سنسور, حلقه قفل شده فاز.,
چکیده مقاله :
در این مقاله طراحی کنترلکننده بدون سنسور عصبی-فازی تطبیقی برای موتور سنکرون مغناطیس دایم پیشنهاد میگردد. کنترلکننده پیشنهاد شده شامل بخش کنترل کننده منطق فازی و تنظیم کننده پارامترهای شبکه عصبی تابع شعاعی پایه منطبق بر تغییرات شرایط کاری سیستم میباشد. بهعبارتی دیگر کنترلکننده پیشنهادی میتواند بر اساس شرایط کاری سیستم خود را تنظیم نموده و منجر به پاسخ بهینه برای سیستم شود. برای کنترل بدون سنسور موتور سنکرون مغناطیس دایم مشاهدهگر مود لغزشی و حلقه قفل شده فاز به صورت یکپارچه استفاده شده است تا امکان تخمین موقعیت و سرعت روتور فراهم شود. جهت حذف خطای تخمینگر و همچنین حلقه قفل شده فاز در ابتدای فعالیت روتور استراتژی کنترلی I-f بهکار گرفته شده است. این استراتژی موجب گذار آرام گشتاور- سرعت از مرحله راه اندازی به مرحله کنترل بدون سنسور خواهد شد. جهت نمایش موثر بودن استراتژی کنترلی پیشنهادی شبیه سازی موتور سنکرون مغناطیس دایم در حضور کنترل کننده پیشنهادی، در محیط نرم افزار MATLAB انجام شده و نتایج آن مورد بررسی قرارگرفته است.
چکیده انگلیسی :
In this paper, the design of an adaptive neuro-fuzzy sensorless controller for a permanent magnet synchronous motor is proposed. The proposed controller includes a fuzzy logic controller part and a radial basis function neural network parameter adjuster adapted to changes in the system operating conditions. In other words, the proposed controller can adjust itself based on the system operating conditions and lead to an optimal response for the system. For sensorless control of a permanent magnet synchronous motor, a sliding mode observer and a phase-locked loop are used in an integrated manner to allow estimation of the rotor position and speed. In order to eliminate the error of the estimator and also the phase-locked loop at the beginning of the rotor operation, an I-f control strategy is used. This strategy will cause a smooth transition of torque-speed from the startup stage to the sensorless control stage. To demonstrate the effectiveness of the proposed control strategy, a simulation of a permanent magnet synchronous motor in the presence of the proposed controller was performed in the MATLAB software environment and its results were analyzed.
[1] W. Zhu, Sh. Li, H. Du, and X. Yu, "Nonsmooth Observer-Based Sensorless Speed Control for Permanent Magnet Synchronous Motor," IEEE Trans. on Industrial Electronics, vol. 69, no. 11, pp. 13514-13523, Jan. 2022.
[2] M. Usama, and J. Kim, "Robust adaptive observer-based finite control set model predictive current control for sensorless speed control of surface permanent magnet synchronous motor," Trans. of the Institute of Measurement and Control, vol. 43, no. 6, pp. 1416-1429, Apr. 2021.
[3] A. G. Abo-Khalil, A. M. Eltamaly, M. S. Alsaud, K. Sayed, and A. S. Alghamdi, "Sensorless control for PMSM using model reference adaptive system," International Trans. on Electrical Energy Systems, vol. 32, no. 11, pp. 1-11, Dec. 2020.
[4] M. Nicola and C. L. Nicola, "Sensorless fractional order control of PMSM based on synergetic and sliding mode controllers," Electronics, pp. 1-44, vol. 9, no. 9, Sept. 2020.
[5] Q. Yang, Y. Cheng, M. Zhu, H. Zhang, Ch. Yu, and P. Liu, "Nonlinear sensorless speed tracking control for PMSM with unmodeled electromotive forces," Asian Journal of Control, vol. 23, no. 5, pp. 2251-2260, Sept. 2021.
[6] Ch. Wu, Y. Zhao, and M. Sun, "Enhancing low-speed sensorless control of PMSM using phase voltage measurements and online multiple parameter identification," IEEE Trans. on Power Electronics, vol. 35, no. 10, pp. 10700-10710, Mar. 2020.
[7] R. Sreejith, and B. Singh, "Sensorless predictive current control of PMSM EV drive using DSOGI-FLL based sliding mode observer," IEEE Trans. on Industrial Electronics, vol. 68, no. 7, pp. 5537-5547, May. 2020.
[8] H. Calgan, "Novel tilt integral sliding mode controller and observer design for sensorless speed control of a permanent magnet synchronous motor," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 41, no. 1, pp. 455-470, Jan. 2022.
[9] M. Wu, X. Sun, J. Zhu, G. Lei, and Y. Guo, "Improved model predictive torque control for PMSM drives based on duty cycle optimization," IEEE Trans. on Magnetics, vol. 57, no. 2, pp 1-5, Jul. 2020.
[10] G. Wang, X. Hao, N. Zhao, G. Zhang, and D. Xu, "Current sensor fault-tolerant control strategy for encoderless PMSM drives based on single sliding mode observer," IEEE Trans. on Transportation Electrification, vol. 6, no. 2, pp. 679-689, May. 2020.
[11] Y. Wang, Y. Xu, and J. Zou, "Sliding-mode sensorless control of PMSM with inverter nonlinearity compensation," IEEE Trans. Power Electron., vol. 34, no. 10, pp. 10206-10220, Oct. 2019.
[12] Sh. Chen, X. Zhang, X. Wu, G. Tan, and X. Chen, "Sensorless control for IPMSM based on adaptive super-twisting sliding-mode observer and improved phase-locked loop," Energies, vol. 12, no. 7, pp. 1207-1225, Mar. 2019.
[13] Y. Chen, M. Li, Y. W. Gao, and Z. Y. Chen, "A sliding mode speed and position observer for a surface-mounted PMSM," ISA Trans., vol. 87, pp. 17-27, Apr. 2019.
[14] C. Gong, Y. Hu, J. Gao, Y. Wang, and L. Yan, "An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM," IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5913-5923, Jul. 2020.
[15] H. K. Hoai, S. C. Chen, and H. Than, "Realization of the sensorless permanent magnet synchronous motor drive control system with an intelligent controller," Electronics, vol. 9, no. 2, pp. 1-22, Feb. 2020.
[16] S. Lin, and W. Zhang, "An adaptive sliding-mode observer with a tangent function-based PLL structure for position sensorless PMSM drives," Int. J. Electr. Power Energy Syst., vol. 88, pp. 63-74, Jun. 2017.
[17] Q. Lu, L. Quan, X. Zhu, Y. Zuo, and W. Wu, "Improved sliding mode observer for position sensorless open-winding permanent magnet brushless motor drives," Prog. Electromagn. Res. M., vol. 77, pp. 147-156, Jan. 2019.
[18] Y. Zhan, J. Guan, and Y. Zhao,"An adaptive second-order sliding-mode observer for permanent magnet synchronous motor with an improved phase-locked loop structure considering speed reverse, " Trans. Inst. Meas. Control, vol. 42, no. 5, pp. 1008-1021, Mar. 2020.
[19] J. Qian, C. Ji, N. Pan, and J. Wu, "Improved Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation System," Appl. Sci., vol. 8, no. 12, pp. 1-10, Dec. 2018.
[20] A. Rubaai, and P. Young, "Hardware/Software Implementation of Fuzzy-Neural-Network Self-Learning Control Methods for Brushless DC Motor Drives," IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 414-424, Aug. 2015.
[21] Y-S. Kung, and M-H. Tsai, "FPGA-Based Speed Control IC for PMSM Drive with Adaptive Fuzzy Control," IEEE Trans. Power Electron., vol. 22, no 6, pp. 2476-2486, Nov. 2007.
[22] Z. Wang, K. Lu, and F. Blaabjerg, "A Simple Startup Strategy Based on Current Regulation for Back-EMF-Based Sensorless Control of PMSM," IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3817-3825. Aug. 2012.
[23] J. Liu, Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and MATLAB Simulation, 1st ed. Heidelberg: Springer Berlin, 2013.