بهبود بارگذاری داده ها با در نظر گرفتن مقدار مصرف انرژی و تازگی اطلاعات در شبکه اینترنت اشیاء صنعتی با کمک الگوریتم ژنتیک تقویتی
سیدابراهیم دشتی
1
(
دانشکده برق و کامپیوتر، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران
)
فاطمه مؤیدی
2
(
گروه مهندسی کامپیوتر، مجتمع آموزش عالی لارستان، لار، ایران
)
عادل سالمی
3
(
دانشکده برق و کامپیوتر، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
)
کلید واژه: بارگذاری, اینترنت اشیای صنعتی, الگوریتم ژنتیک, یادگیری تقویتی,
چکیده مقاله :
با افزایش روزافزون کاربرد اینترنت اشیا در زندگی روزمره و مخصوصاً صنعت، بهبود کارایی و زمان تأخیر با کمک بارگذاری دادهها یکی از اهداف این مسائل شده است. کنترل این عوامل باعث بهبود مصرف انرژی و استفاده طولانیتر از باتری اشیا خواهد شد. در این مقاله روشی برای بهبود پردازش دادههای حسگرها و محاسبات لبه و ابر در سیستمهای اینترنت اشیای صنعتی معرفی گردیده و معماری مطابق با دنیای واقعی در نظر گرفته شده است. در این معماری از سرورهای لبه با قابلیتهای محاسباتی در لبه شبکه به ویژه در ایستگاههای پایه استفاده میشود. درخواستهای حساس به تأخیر میتوانند از طریق کانالهای بیسیم به سرورهای لبه نزدیک منتقل شوند؛ در نتیجه ترافیک در شبکه مرکزی و تأخیر انتقال داده کاربر را به ویژه برای برنامههای صنعتی با حجم داده زیاد کاهش دهد. هدف در اینترنت اشیای صنعتی، مدیریت منابع شبکه، انتقال محاسبات و کمینهسازی مصرف انرژی در دستگاههای اینترنت اشیا با تضمین تازگی دادههای حسگر است. محیط شبکه و کارهای ورودی متغیر با زمان هستند. در این مقاله محیط مسئله و محدودیتهای آن با فرمول بیان گردیده و این مسئله با استفاده از الگوریتم ژنتیک و یادگیری تقویتی پیشنهادی حل شده است. راه حل پیشنهادی سبب بهبود محیط پویای مسئله برای بارگذاری دادهها و کارها با در نظر گرفتن انرژی و انتقال محاسبات و دادهها با درنظرگیری تازگی آنها شده است. نتایج نشاندهنده بهبود متوسط 40 درصدی نسبت به روشهای قبلی میباشد.
چکیده انگلیسی :
With the increasing use of Internet of Things in daily life and especially in industry, improving efficiency and delay time with the help of data offloading is one of the goals of these issues. Controlling these factors will improve energy consumption and longer use of things batteries. In this article, the method is introduced to improve sensor data processing and edge and cloud computing in industrial Internet of Things systems. The architecture is considered in accordance with the real world; in this architecture, edge servers with computing capabilities at the edge of the network, especially Used in base stations. Delay-sensitive requests can be forwarded to nearby edge servers through wireless channels, thereby reducing traffic in the core network and user data transmission latency, especially for data-intensive industrial applications. In the Industrial Internet of Things aims to manage network resources, transfer calculations and minimize energy consumption in Internet of Things devices by guaranteeing the freshness of sensor data. The network environment and input tasks are variable with time. In this article, the environment of the problem and its limitations are expressed with formulas. This problem has been solved using the proposed genetic algorithm and reinforcement learning. The proposed solution has improved the dynamic environment of the problem for offloading data and tasks by considering energy and transferring calculations and data by considering their freshness. The results show an average improvement of 40% compared to the previous methods.
[1] K. Peng, et al., "Intelligent computation offloading and resource allocation in IIoT with end-edge-cloud computing using NSGA-III," IEEE Trans. on Network Science and Engineering, vol. 10, no. 5, pp. 3032-3046, Sept./Oct. 2022.
[2] J. Huang, H. Gao, S. Wan, and Y. Chen, "AoI-aware energy control and computation offloading for industrial IoT," Future Generation Computer Systems, vol. 139, pp. 29-37, Feb. 2023.
[3] H. Hu, T. Wang, and F. Feng, "Research on the deep deterministic policy algorithm based on the first-order inverted pendulum," Applied Sciences, vol. 13, no. 13, Article ID: 7594, 15 pp., 1 Jul. 2023.
[4] W. Huo, T. Zhao, F. Yang, and Y. Cheng, "An improved soft actor-critic based energy management strategy of fuel cell hybrid electric vehicle," J. of Energy Storage, pt. A, vol. 72, Article ID: 108243, Nov. 2023.
[5] R. Liu, C. Wang, A. Tang, Y. Zhang, and Q. Yu, "A twin delayed deep deterministic policy gradient-based energy management strategy for a battery-ultracapacitor electric vehicle considering driving condition recognition with learning vector quantization neural network," J. of Energy Storage, vol. 41, Article ID: 108147, Nov. 2023.
[6] M. Pan, Z. Li, and J. Qian, "Energy-efficient multiuser and multitask computation offloading optimization method," Intelligent and Converged Networks, vol. 4, no. 1, pp. 76-92, Mar. 2023.
[7] S. Tang, et al., "Computational intelligence and deep learning for next-generation edge-enabled industrial IoT," IEEE Trans. on Network Science and Engineering, vol. 10, no. 5, pp. 2881-2893, Sept./Oct. 2022.
[8] Z. Wang, Y. Ding, X. Jin, Y. Chen, and C. Gao, "Task offloading for edge computing in industrial Internet with joint data compression and security protection," The J. of Supercomputing, vol. 79, pp. 4291-4317, 2023.[1] K. Peng, et al., "Intelligent computation offloading and resource allocation in IIoT with end-edge-cloud computing using NSGA-III," IEEE Trans. on Network Science and Engineering, vol. 10, no. 5, pp. 3032-3046, Sept./Oct. 2022.
[2] J. Huang, H. Gao, S. Wan, and Y. Chen, "AoI-aware energy control and computation offloading for industrial IoT," Future Generation Computer Systems, vol. 139, pp. 29-37, Feb. 2023.
[3] H. Hu, T. Wang, and F. Feng, "Research on the deep deterministic policy algorithm based on the first-order inverted pendulum," Applied Sciences, vol. 13, no. 13, Article ID: 7594, 15 pp., 1 Jul. 2023.
[4] W. Huo, T. Zhao, F. Yang, and Y. Cheng, "An improved soft actor-critic based energy management strategy of fuel cell hybrid electric vehicle," J. of Energy Storage, pt. A, vol. 72, Article ID: 108243, Nov. 2023.
[5] R. Liu, C. Wang, A. Tang, Y. Zhang, and Q. Yu, "A twin delayed deep deterministic policy gradient-based energy management strategy for a battery-ultracapacitor electric vehicle considering driving condition recognition with learning vector quantization neural network," J. of Energy Storage, vol. 41, Article ID: 108147, Nov. 2023.
[6] M. Pan, Z. Li, and J. Qian, "Energy-efficient multiuser and multitask computation offloading optimization method," Intelligent and Converged Networks, vol. 4, no. 1, pp. 76-92, Mar. 2023.
[7] S. Tang, et al., "Computational intelligence and deep learning for next-generation edge-enabled industrial IoT," IEEE Trans. on Network Science and Engineering, vol. 10, no. 5, pp. 2881-2893, Sept./Oct. 2022.
[8] Z. Wang, Y. Ding, X. Jin, Y. Chen, and C. Gao, "Task offloading for edge computing in industrial Internet with joint data compression and security protection," The J. of Supercomputing, vol. 79, pp. 4291-4317, 2023.
[9] J. Xu, B. Yang, Y. Liu, C. Chen, and X. Guan, "Joint task offloading and resource allocation for multihop Industrial Internet of Things," IEEE Internet of Things J., vol. 9, no. 21, pp. 22022-22033, 1 Nov. 2022.
[10] J. Gao, et al., "A task offloading algorithm for cloud-edge collaborative system based on Lyapunov optimization," Cluster Computing, vol. 26, no. 1, pp. 337-348, Feb. 2023.
[11] س. ا. دشتی و ح. زارع، "افزایش کارایی الگوریتم تخلیه در محاسبات مه با کمک الگوریتم بهینه سازی ازدحام ذرات"، فصلنامه روشهای هوشمند در صنعت برق، سال 16، شماره 61، صص. 96-79، تابستان 1404.
[12] S. E. Dashti and A. M. Rahmani, "Dynamic VMs placement for energy efficiency by PSO in cloud computing," J. of Experimental & Theoretical Artificial Intelligence, vol. 28, no. 1-2, pp. 97-112, 2016.
[13] M. Sharma, et al., "Enabling security for the Industrial Internet of Things using deep learning, blockchain, and coalitions," Trans. on Emerging Telecommunications Technologies, vol. 32, no. 7, Article ID: e4137, Jul. 2021.
[14] D. Jiang, Y. Wang, Z. Lv, W. Wang, and H. Wang, "An energy-efficient networking approach in cloud services for IIoT networks," IEEE J. on Selected Areas in Communications, vol. 38, no. 5, pp. 928-941, May 2020.
[15] H. Kurniawati, "Partially observable Markov decision processes and robotics," Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, pp. 253-277, 2022.
[16] Y. Song, et al., "RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem," Swarm and Evolutionary Computation, vol. 77, Article ID: 101236, Mar. 2023.