Proposing a Deep Learning Based Solution for Detecting Suspicious Cases of COVID-19
Subject Areas : electrical and computer engineering
Atena Abidi
1
,
Haniye Jamahmoodi
2
,
Zahra Heydaran Daroogheh Amnyieh
3
,
iman zabbah
4
*
1 - Dept. of Comp. Eng., Bushehr Branch , Islamic Azad University, Bushehr, Iran
2 - Dept. of Comp. Eng., Mashhad Branch , Islamic Azad University, Mashhad, Iran
3 - Dept. of Comp. Eng., Dolatabad Branch, Islamic Azad University, Isfahan, Iran
4 - Dept. of Comp. Eng., Torbat Heydariyeh Branch, Islamic Azad University, Torbat Heydariyeh, Iran
Keywords: COVID-19, Deep learning, Data mining,
Abstract :
Deep neural networks are used in the detection of diseases and medical tasks due to their power and capability in extracting complex features and non-linear relationships. Following the emergence of COVID-19, deep learning approaches have been introduced as a powerful approach in diagnosing this disease. In some cases, data mining-based methods cannot definitively diagnose COVID-19 due to their lack of appropriate generalizability on the data. The aim of this research is to propose a solution to improve the diagnostic results in suspicious COVID-19 images.
In this study, after diagnosing the disease using two deep networks, GoogleNet and AlexNet, the probability layer of the two learned networks is extracted, and the suspicious cases of the disease are identified. Then, the top features extracted from the two deep learners are combined and sent to a perceptron neural network for the diagnosis of suspicious cases. The extraction of the best features was performed using principal component analysis. The study database includes 224 CT scan images of COVID-19-infected lungs and 522 lung images of healthy individuals, obtained from the GitHub repository. The study results indicate that the aggregation of deep learners in the probability layer can lead to a 98.1% improvement in the diagnosis of COVID-19 in suspicious cases.
[1] M. Zreik, et al., "Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis," Med Image Anal, vol. 44, no. 3, pp. 72-85, Feb. 2018.
[2] M. Q. Zhang, et al., "Clinical features of 2019 novel coronavirus pneumonia in the early stage from a fever clinic in Beijing," Case Reports, vol. 43, no. 3, pp. 215-218, May 2020.
[3] R. Ouni and H. Alhichri, Cross-Dataset Domain Adaptation for the Classification of COVID-19 Using Chest Computed Tomography Images, arXiv preprint arXiv:2311.08524, 2023.
[4] L. Gaur, U. Bhatia, N. Z. Jhanjhi, G. Muhammad, and M. Masud, "Medical image-based detection of COVID-19 using deep convolution neural networks," Multimedia Systems, vol. 29, pp. 1729-1738, 2023.
[5] W. Zhao, Z. Zhong, X. Xie, Q. Yu, and J. Liu, "Relation between chest CT findings and clinical conditions of coronavirus disease (covid-19) pneumonia: a multicenter study," American J. of Roentgenology, vol. 214, no. 5, pp. 1072-1077, May 2020.
[6] O. Gozes, et al., Rapid AI Development Cycle for the Coronavirus (Covid-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring Using Deep Learning CT Image Analysis, arXiv preprint. arXiv:2003.05037, 2020.
[7] T. Ai, et al., "Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases" Radiology, vol. 296, no. 2, pp. E32-E40, Aug. 2020.
[8] C. Zheng, et al., "Deep learning-based detection for COVID-19 from chest CT using weak label," IEEE Trans. on Medical Imaging, vol. 39, no. 8, pp. 2615-2625, Aug. 2020.
[9 م. معلم و ع. ا. پویان، "کشف ناهنجاری با استفاده از کد کننده خودکار مبتنی بر بلوکهای "LSTM، مجله مدل¬سازی در مهندسی، سال 17، شماره 56، صص. 211-191، اردیبهشت 1398.
[10] L. Wang, Y. Lin, and A. Wong, "COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images," Scientific Reports, vol. 10, Article ID: 19549, 2020.
[11] ع. ماروسی، ا. ذباح، م. مقربی، س. ا. یثربی و ک. لایقی، " بهبود تشخیص بیماری سرطان پستان با استفاده از سیستم استنتاج عصبی- فازی تطبیقی"، کارافن، سال 19، شماره 3، صص. 392-377، آذر 1401.
[12] M. Loey, F. Smarandache, and N. E. M. Khalifa, "Within the lack of COVID-19 benchmark dataset: a novel GAN with deep transfer learning for corona-virus detection in chest X-ray images," Symmetry, vol. 12, no. 4, Article ID: 0651, 2020.
[13] X. Yang, et al., "Deep learning signature based on staging CT for preoperative prediction of sentinel lymph node metastasis in breast cancer," Academic Radiology, vol. 27, no. 9, pp. 1226-1233, Sept. 2019.
[14] E. Cortés and S. Sánchez, "Deep Learning Transfer with AlexNet for chest X-ray COVID-19 recognition," IEEE Latin America Trans., vol. 19, no. 6, pp. 944-951, Jun. 2021.
[15] S. Akter, F. J. M. Shamrat, S. Chakraborty, A. Karim, and S. Azam, "COVID-19 detection using deep learning algorithm on chest X-ray images," Biology, vol. 10, no. 11, Article ID: 1174, 2020.
[16] Y. Kaya, Z. Yiner, M. Kaya, and F. Kuncan, "A new approach to COVID-19 detection from x-ray images using angle transformation with GoogleNet and LSTM," Measurement Science and Technology, vol. 33, no. 12, Article ID: 124011, Dec. 2022.
[17] I. Zabbah, K. Layeghi, and R. Ebrahimpour, "Improving the diagnosis of COVID-19 by using a combination of deep learning Models," Journal of Electrical and Computer Engineering Innovations, vol. 10, no. 2, pp. 411-424, Jul. 2020.
[18] ا. ذباح، ع. ماروسی و ر. ابراهیم¬پور، "تشخیص هوشمند بیماری کوید19 با استفاده از ترکیب ویژگی های عمیق و تحلیل مولفه اصلی"، پردازش سیگنال پیشرفته، در حال انتشار.
[19] V. X. Nunes, et al., "A novel web platform for covid-19 diagnosis using x-ray exams and deep learning techniques," in Proc. Int. Joint Conf. on Neural Networks, 8 pp., Shenzhen, China, 18-22 Jul. 2019.
[20] P. Silva, E. Luz, G. Silva, G. Moreira, R. Silva, D. Lucio, and D. Menotti, "COVID-19 detection in CT images with deep learning: a voting-based scheme and cross-datasets analysis," Informatics in Medicine Unlocked, vol. 20, Article ID: 100427, 2020.
[21] ر. نوپور، ج. شنبه¬زاده و ه. کاظمی آرپناهی، "پیشنهاد یک راهکار فناورانه موثر جهت تشخیص زودهنگام بیماری کووید-19: مطالعه مبتنی بریادگیری ماشین داده محور"¬، مجله انفورماتیک سلامت و زیست پزشکی، سال 7، شماره 1، صص. 78-68، بهار 1400.