طراحی ساختار مناسب ترانسفورماتور الکترونیک قدرت بر مبنای استفاده از مبدل های چند پورته با قابلیت نصب ذخیره ساز
حمید کاوش
1
(
دانشكده مهندسي برق و كامپيوتر، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران
)
مهدی سرادارزاده
2
(
دانشكده مهندسي برق و كامپيوتر، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران،
)
کلید واژه: پل فعال چندگانه, ترانسفورماتور الکترونیک قدرت, ذخیرهسازی انرژی, شیفت فاز تکی.,
چکیده مقاله :
ترانسفورماتور الکترونیک قدرت (PET) بهعنوان جایگزینی مناسب برای ترانسفورماتورهای معمول فرکانس خط (LFT) در سیستمهای قدرت مدرن در نظر گرفته میشود. همچنین، در کاربردهای با توان و ولتاژ بالا، ساختارهای مدولار مانند پل H آبشاری (CHB)، به عنوان راهحلهای مناسب برای طراحی PET شناخته میشوند. با این حال، در توپولوژیها موجود معرفیشده، توانهای اعوجاجی فرکانس پایین در خازنهای لینک DC و عملکرد نامناسب در هنگام خطا میتواند از معضلات این توپولوژیها باشد که معمولاً بر اساس مبدل پل فعال دوگانه (DAB) طراحی میشوند. به منظور حل این مسئله، این مقاله چند ساختار مبتنی بر مبدلهای چندپورته پیشنهاد میکند که با پیکربندی مناسب میتوانند معضلات مطرحشده را رفع کنند. استفاده از چند مبدل پل فعال پنجگانه و ابرخازن و ارائه یک روش کنترل مناسب جهت کنترل توان بین پورتها به طراحی جدید یک ترانسفورماتور الکترونیک قدرت با دینامیک بالا و قابلیت عملکرد در هنگام خطا در MV و LV منجر خواهد شد. طراحی مفهومی و مطالعات شبیهسازی انجامشده با استفاده از Matlab/Simulink اثربخشی و عملکرد مناسب توپولوژیهای پیشنهادی را نشان میدهد.
چکیده انگلیسی :
Power Electronic Transformers (PETs) have emerged as promising alternatives to conventional Line Frequency Transformers (LFTs) in modern power systems. For high-power and high-voltage applications, modular configurations such as Cascaded H-Bridge (CHB) structures are widely recognized as effective PET design solutions. However, existing PET topologies, most commonly based on Dual Active Bridge (DAB) converters, suffer from significant drawbacks, including low-frequency distortion power in DC-link capacitors and degraded performance under fault conditions.
To overcome these limitations, this paper introduces several multi-port converter-based PET architectures. By employing multiple five-port active bridge converters in conjunction with supercapacitors and an advanced control strategy for inter-port power management, the proposed PET achieves enhanced dynamic performance and fault-tolerant operation at both medium-voltage (MV) and low-voltage (LV) levels. Conceptual design and comprehensive simulation studies conducted in Matlab/Simulink confirm the effectiveness and robustness of the proposed topologies.
[1] X. She, A. Q. Huang and R. Burgos, "Review of solid-state transformer technologies and their application in power distribution systems," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 186-198, Sept. 2013.
[2] J. E. Huber and J. W. Kolar, "Solid-state transformers: On the origins and evolution of key concepts," IEEE Industrial Electronics Magazine, vol. 10, no. 3, pp. 19-28, Sept. 2016.
[3] A. Q. Huang, "Medium-voltage solid-state transformer: Technology for a smarter and resilient grid," IEEE Industrial Electronics Magazine, vol. 10, no. 3, pp. 29-42, Oct. 2016.
[4] S. Madhusoodhanan et al., "Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters," IEEE Trans. on Industry Applications, vol. 51, no. 4, pp. 3343-3360, Sept. 2015.
[5] X. Wang, J. Liu, S. Ouyang, T. Xu, F. Meng and S. Song, "Control and Experiment of an H-Bridge-Based Three-Phase Three-Stage Modular Power Electronic Transformer," IEEE Trans. on Power Electronics, vol. 31, no. 3, pp. 2002-2011, Ma. 2016.
[6] C. Gu, Z. Zheng, L. Xu, K. Wang and Y. Li, "Modeling and control of a multiport power electronic transformer (PET) for electric traction applications," IEEE Trans. on Power Electronics, vol. 31, no. 2, pp. 915-927, Feb. 2016.
[7] N. Zhao, J. Liu, Y. Ai, J. Yang, J. Zhang and X. You, "Power-linked predictive control strategy for power electronic traction transformer," IEEE Trans. on Power Electronics, vol. 35, no. 6, pp. 6559-6571, Jun. 2020.
[8] J. E. Huber and J. W. Kolar, "Volume/weight/cost comparison of a 1 MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer," in Proc. IEEE Energy Conversion Congress and Exposition, pp. 4545-4552, Pittsburgh, PA, USA, 14-18 Sept. 2014.
[9] R. Pena-Alzola, G. Gohil, L. Mathe, M. Liserre, and F. Blaabjerg, "Review of modular power converters solutions for smart transformer in distribution system," in Proc. IEEE Energy Conversion Congress and Exposition, pp. 380-387, Denver, CO, USA, 15-19 Sept. 2013.
[10] F. Briz, M. Lopez, A. Rodriguez, and M. Arias, "Modular power electronic transformers: Modular multilevel converter versus cascaded H-bridge solutions," IEEE Industrial Electronics Magazine, vol. 10, no. 4, pp. 6-19, Dec. 2016.
[11] Y. Ai, J. Liu, S. Chen, Y. Shi, and C. Pei, "An improved DC power electronic transformer based on voltage balancing converter for bipolar distribution system," IEEE Trans. on Industrial Electronics, vol. 70, no. 12, pp. , Dec. 2023.
[12] R. Wang et al., "A high power density single-phase PWM rectifier with active ripple energy storage," IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1430-1443, May. 2010.
[13] H. Li, K. Zhang, and H. Zhao, "DC-link active power filter for high-power single-phase PWM converters," Journal of Power Electronics, vol. 12, no. 3, pp. 458-467, May 2012.
[14] B. Liu, W. Song, J. Ma, X. Feng, and W. Li, "Dynamic performance improvement of single‐phase PWM converters with power hysteresis control scheme," IET Power Electronics, vol. 11, no. 12, pp. 1894-1902, 2018.
[15] L. Zhang and X. Ruan, "Control schemes for reducing second harmonic current in two-stage single-phase converter: An overview from DC-bus port-impedance characteristics," IEEE Trans. on Power Electronics, vol. 34, no. 10, pp. 10341-10358, Oct. 2019.
[16] Y. Xia, J. Roy and R. Ayyanar, "A capacitance-minimized, doubly grounded transformer less photovoltaic inverter with iInherent active-power decoupling," IEEE Trans. on Power Electronics, vol. 32, no. 7, pp. 5188-5201, Jul. 2017.
[17] P. K. Achanta, B. B. Johnson, G. -S. Seo and D. Maksimovic, "A multilevel DC to three-phase AC architecture for photovoltaic power plants," IEEE Trans. on Energy Conversion, vol. 34, no. 1, pp. 181-190, Mar. 2019.
[18] X. Li, L. Cheng, L. He, Z. Zhu, Y. Yang, and C. Wang, "Capacitor voltage ripple minimization of a modular three-phase AC/DC power electronics transformer with four-winding power channel," IEEE Access, vol. 8, pp. 119594-119608, 2020.
[19] W. Wen, K. Li, Z. Zhao, L. Yuan, X. Mo, and W. Cai, "Analysis and control of a four-port megawatt-level high-frequency-bus-based power electronic transformer," IEEE Trans. on Power Electronics, vol. 36, no. 11, pp. 13080-13095, Nov. 2021.
[20] M. Feng, C. Gao, J. Xu, C. Zhao and G. Li, "Modeling for complex modular power electronic transformers using parallel computing," IEEE Trans. on Industrial Electronics, vol. 70, no. 3, pp. 2639-2651, Mar. 2023.
[21] S. Falcones, R. Ayyanar and X. Mao, "A DC–DC multiport-converter-based solid-state transformer integrating distributed generation and storage," IEEE Trans. on Power Electronics, vol. 28, no. 5, pp. 2192-2203, May 2013.
[22] T. O. Olowu, H. Jafari, M. Moghaddami and A. I. Sarwat, "Multiphysics and multiobjective design optimization of high-frequency transformers for solid-state transformer applications," IEEE Trans. on Industry Applications, vol. 57, no. 1, pp. 1014-1023, Jan.-Feb. 2021.
[23] Y. Cai, et al., "Magnetic integration for a dual active bridge converter planar transformer with accurate leakage inductances estimation," IEEE Access, vol. 12, pp. 112278-112289, 2024.
[24] L. Zheng, et al., "7.2 kV Three-port SiC single-stage current-source solid-state transformer with 90 kV lightning protection," lIEEE Trans. on Power Electronics, vol. 37, no. 10, pp. 12080-12094, Oct. 2022.
[25] Z. Zhao et al., "Design and Demonstration of a 100 kW High-Frequency Matrix Core Transformer for More Electric Aircraft Power Distribution," IEEE Trans. on Transportation Electrification, vol. 8, no. 4, pp. 4279-4290, Dec. 2022.