بررسی تأثیر خطا در تخمین موقعیت اولیه روتور موتور سنکرون رلوکتانسی بر روی پارامترهای سرعت، جریان و گشتاور راه اندازی
حمیدرضا پیرو دین نبی
1
(
پژوهشگاه نیرو، تهران، ایران،
)
فرزاد بداغی
2
(
دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران،
)
کلید واژه: تخمین موقعیت اولیه روتور, موتور سنکرون رلوکتانسی, درایو موتورهای الکتریکی, تزریق سیگنال فرکانس بالا.,
چکیده مقاله :
عدم تخمین دقیق موقعیت اولیه روتور موتور سنکرون رلوکتانسی میتواند منجر به کاهش گشتاور راهاندازی و کندشدن پاسخ سرعت روتور در لحظه راهاندازی گردد. روشهای متعددی برای تخمین موقعیت اولیه روتور موتور سنکرون رلوکتانسی ارائه شده که از نقطه نظر پیچیدگی، پیادهسازی و دقت تخمین موقعیت اولیه روتور قابل تقسیمبندی میباشند. برخی از این روشها با وجود پیچیدگی پیادهسازی بالا، خطای تخمین موقعیت اولیه روتور موتور سنکرون رلوکتانسی را کاهش میدهند. در مقابل برخی روشها دارای مزیت حجم محاسبات کم و سادگی در پیادهسازی میباشند، اما خطای بیشتری در تخمین موقعیت اولیه روتور وجود دارد که در برخی روشها تا 30 درجه خطا در تخمین موقعیت اولیه روتور وجود دارد. در این مقاله به بررسی تأثیر خطای تخمین موقعیت اولیه روتور بر روی عملکرد موتور سنکرون رلوکتانسی از جنبههای مختلف پرداخته میشود. به منظور بررسی تأثیر خطا در تخمین موقعیت اولیه روتور بر پارامترهای موتور سنکرون رلوکتانسی، خطای موقعیت اولیه با زاویههای مختلف 0، 10، 20 و 30 درجه بر روی پارامترهای مختلف موتور از جمله گشتاور الکترومغناطیسی راهاندازی و همچنین زمان رسیدن سرعت مکانیکی روتور به سرعت مرجع مورد بررسی قرار گرفته و نتایج حاصل از شبیهسازی با نرمافزار MATLAB/Simulink ارائه شده است.
چکیده انگلیسی :
The inaccurate estimation of the initial rotor position in a synchronous reluctance motor can lead to reduced starting torque and slower rotor speed response at startup. Various methods have been proposed to estimate the initial rotor position of the synchronous reluctance motor, which can be categorized based on complexity, implementation, and estimation accuracy. Some of these methods, despite their high implementation complexity, reduce the error in estimating the initial rotor position. On the other hand, some methods are advantageous due to their low computational burden and ease of implementation, but they exhibit a higher error in estimating the initial rotor position, with some methods showing errors of up to 30 degrees. This paper examines the impact of initial rotor position estimation errors on the performance of synchronous reluctance motors from various aspects. To analyze the effect of estimation errors on the motor's parameters, errors of 0, 10, 20, and 30 degrees in initial rotor position were applied, and the resulting impact on parameters such as electromagnetic starting torque and rotor speed response time to the reference speed were investigated. The simulation results were presented using MATLAB/Simulink software.
[1] K. B. Tawfiq, M. N. Ibrahim, E. E. El-Kholy, and P. Sergeant, "Performance analysis of a rewound multiphase synchronous reluctance machine," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 297-309, Feb. 2022.
[2] Y. Bao, et al., "A novel concept of ribless synchronous reluctance motor for enhanced torque capability," IEEE Trans. on Industrial Electronics, vol. 67, no. 4, pp. 2553-2563, Apr. 2020.
[3] Q. Chen, Y. Yan, G. Xu, M. Xu, and G. Liu, "Principle of torque ripple reduction in synchronous reluctance motors with shifted asymmetrical poles," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2611-2622, Sep. 2020. [4] W. Chen, S. Dong, X. Li, Y. Cao, and G. Zhang, "Initial rotor position detection for brushless DC motors based on coupling injection of high-frequency signal," IEEE Access, vol. 7, pp. 133433-133441, 2019.
[5] G. Bi, G. Wang, G. Zhang, N. Zhao, and D. Xu, "Low-noise initial position detection method for sensorless permanent magnet synchronous motor drives," IEEE Trans. on Power Electronics, vol. 35, no. 12, pp. 13333-13344, Dec. 2020.
[6] D. Pasqualotto, S. Rigon, and M. Zigliotto, "Sensorless speed control of synchronous reluctance motor drives based on extended Kalman filter and neural magnetic model," IEEE Trans. on Industrial Electronics, vol. 70, no. 2, pp. 1321-1330, Feb. 2023.
[7] X. Huang, J. Liang, Z. Qian, and J. Li, "An iterative estimation algorithm of prepositioning focusing on the detent force in the permanent magnet linear synchronous motor system," IEEE Trans. on Industrial Electronics, vol. 67, no. 10, pp. 8252-8261, Oct. 2020.
[8] T. Wu, et al., "A fast estimation of initial rotor position for low-speed free-running IPMSM," IEEE Trans. on Power Electronics, vol. 35, no. 7, pp. 7664-7673, Jul. 2020.
[9] Z. Wang, Z. Cao, and Z. He, "Improved fast method of initial rotor position estimation for interior permanent magnet synchronous motor by symmetric pulse voltage injection," IEEE Access, vol. 8, pp. 59998-60007, 2020.
[10] D. Kim, J. Kim, H. Lim, J. Park, J. Han, and G. Lee, "A study on accurate initial rotor position offset detection for a permanent magnet synchronous motor under a no-load condition," IEEE Access, vol. 9, pp. 73662-73670, 2021.
[11] X. Zhang, H. Li, S. Yang, and M. Ma, "Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection," IEEE Trans. on Industrial Electronics, vol. 65, no. 6, pp. 4702-4713, Jun. 2018.
[12] X. Fu, Y. Xu, H. He, and X. Fu, "Initial rotor position estimation by detecting vibration of permanent magnet synchronous machine," IEEE Trans. on Industrial Electronics, vol. 68, no. 8, pp. 6595-6606, Aug. 2021.
[13] J. Wei, H. Xu, B. Zhou, Z. Zhang, and C. Gerada, "An integrated method for three-phase AC excitation and high-frequency voltage signal injection for sensorless starting of aircraft starter/generator," IEEE Trans. on Industrial Electronics, vol. 66, no. 7, pp. 5611-5622, Jul. 2019.
[14] H. Li, X. Zhang, S. Yang, F. Li, and M. Ma, "Improved initial rotor position estimation of IPMSM using amplitude demodulation method based on HF carrier signal injection," in Proc. 43rd Annual Conf. of the IEEE Industrial Electronics Society, IECON'017, pp. 1996-2001, Beijing, China, 29 Oct-1 Nov. 2017.
[15] T. Wu, et al., "A fast estimation of initial rotor position for low-speed free-running IPMSM," IEEE Trans. on Power Electronics, vol. 35, no. 7, pp. 7664-7673, Jul. 2020.
[16] S. C. Yang, S. M. Yang, and J. H. Hu, "Robust initial position estimation of permanent magnet machine with low saliency ratio," IEEE Access, vol. 5, pp. 2685-2695, 2017.
[17] X. Wu, et al., "Initial rotor position detection for sensorless interior PMSM with square-wave voltage injection," IEEE Trans. on Magnetics, vol. 53, no. 11, pp. 1-4, Nov. 2017.
[18] H. Pairo and B. Nikmaram, "Initial rotor position estimation of SynRM based on pulsating voltage injection combined with finite position set algorithm," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 11, no. 4, pp. 4321-4331, Aug. 2023.
[19] H. Pairo, B. Nikmaram, and S. Mohamadian, "Adaptive-based accurate rotor initial position estimation in synchronous reluctance motors," IEEE Trans. on Industrial Electronics, vol. 71, no. 11, pp. 13812-13821, Nov. 2024.
[20] B. Xia, et al., "An improved high-frequency voltage signal injection-based sensorless control of IPMSM drives with current observer," IEEE Trans. on Transportation Electrification, vol. 10, no. 3, pp. 5155-5167, Sept. 2024.
[21] X. Wu, Z. Q. Zhu, and Z. Wu, "A novel rotor initial position detection method utilizing DC-link voltage sensor," IEEE Trans. on Industry Applications, vol. 56, no. 6, pp. 6486-6495, Nov./Dec. 2020.
[22] Y. Wang, et al., "Initial rotor position and magnetic polarity identification of PM synchronous machine based on nonlinear machine model and finite element analysis," IEEE Trans. on Magnetics, vol. 46, no. 6, pp. 2016-2019, Jun. 2010.