بهبود شبکه های بی سیم تلفیقی به وسیله بازی های مارکوف
محورهای موضوعی : مهندسی برق و کامپیوترپیام پرکار رضائیه 1 , حمید شکرزاده 2 * , مهدی دهقان تخت فولادی 3 , امیرمسعود رحمانی 4
1 - گروه مهندسی کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران،ایران
2 - گروه مهندسی کامپیوتر، واحد پردیس، دانشگاه آزاد اسلامی، پردیس، ايران
3 - گروه مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه امیرکبیر، تهران، ایران
4 - گروه مهندسی کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: شبکههای محلی تلفیقی, شبکه Li-Fi, شبکه Wi-Fi, نقاط دسترسی و توازن بار.,
چکیده مقاله :
امروزه شبکههای بیسیم تلفیقی اهمیت فراوان پیدا کردهاند. ازجمله فناوریهای مهم در این زمینه، فناوری تلفیقی ارتباطات نور مرئی و فرکانس رادیویی است که نمونه مهم آن، ترکیب شبکههای محلی Wi-Fi و Li-Fi است. این ترکیب موجب پوشش نقاط ضعف و تقویت نقاط قوت شبکه بیسیم محلی میشود. همچنین موضوعی که میتواند بهرهوری را در شبکه افزایش دهد تعادل بار است؛ بهویژه وقتی وجود نقاط دسترسی از هر دو شبکه موجب انتخابهای بیشتر خواهد شد. در واقع در الگوریتم انتخاب نقطه دسترسی روش پیشنهادی در این پژوهش به گونهای عمل شده که در هنگام قرارگرفتن در یک نقطه دسترسی، تصمیمگیری برای انتخاب محل قرارگیری بر پایه تعادل بین عاملهای موجود در بازی مارکوف در رفتار استراتژیک اشیا باشد و به این ترتیب میزان تأخیر شبکه کاهش یافته و تعادل بار افزایش خواهد یافت. بدین ترتیب یک روش پویا پیشنهاد شده که با استفاده از آن در هر زمان و بهویژه هنگام تغییر توپولوژی در شبکه، تصمیمات متناسب با شرایط گرفته میشود. روش پیشنهادی مزایایی همچون انتخاب پویای نقاط دسترسی با توجه به شرایط شبکه، بازخورد مستقیم از کارایی شبکه و کانال اشتراکی، هوشمندی و یادگیری نسبت به تغییرات برای انتخاب نقاط، تعامل با عاملهای مشابه در گرهها و کاهش احتمال ازدحام در هر نقطه دسترسی دارد. همچنین با افزایش ترافیک کاربران (که منجر به شرایط پرازدحام میشود و احتمال ازدحام در گرهها و نقاط دسترسی بالا میرود)، این روش کمک بیشتری را نسبت به توازن بار و کاهش سطح ازدحام مینماید به طوری که اختلاف آن با روشهای مورد مقایسه که از تکنیکهای ثابتتری مانند روش فازی استفاده میکنند، افزایش چشمگیری مییابد. با توجه به نتایج به دست آمده این روش توانسته است بیش از 10% بهبود کارایی در شبکه محلی نسبت به روشهای پیشین همچون روش فازی و بالاتر از 30% بهبود کارایی نسبت به سیاست انتخاب SSS در شرایط بار ترافیکی بالا ایجاد کند.
Nowadays integrated wireless networks have become very important. Among the important technologies in this field is the combined technology of visible light and radio frequency communications, an important example of which is the combination of Wi-Fi and Li-Fi local networks. This combination covers the weaknesses and strengthens the strengths of the local wireless network.
Also, an issue that can increase productivity in the network is load balancing, especially when the presence of access points from both networks will lead to more choices. In fact, in the proposed access point selection algorithm in this research, it has been done in such a way that when being at an access point, the decision to choose the location is based on the balance between the factors in the Markov game based on the strategic behavior of objects. In this way, network delay will be reduced and load balance will be increased.
Therefore, a dynamic method has been proposed, which can be used to make decisions according to the conditions at any time, especially when the topology changes in the network. The proposed method has advantages such as dynamic selection of access points according to network conditions, direct feedback on the efficiency of the network and shared channel, intelligence and learning towards changes to select points, interaction with similar agents in nodes, and reducing the probability of congestion at each access point. Also, with the increase in user traffic, which leads to congested conditions and the possibility of congestion in nodes and access points, this method helps more in terms of load balancing and reducing the level of congestion. So that its difference with compared methods that use more stable techniques such as fuzzy method increases significantly.
According to the obtained results, this method has been able to improve the efficiency of the local network by more than 10% compared to the previous methods such as the fuzzy method and more than 30% compared to the SSS selection policy in high traffic load conditions.
[1] W. Yunlu, X. Wu, and H. Haas, "Distributed load balancing for Internet of Things by using Li-Fi and RF hybrid network," in Proc. IEEE 26th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications, PIMRC'15, pp. 1289-1294, Hong Kong, China, 3 Aug.-2 Sept. 2015.
[2] W. Yunlu and H. Haas, "Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks," J. of Lightwave Technology, vol. 33, no. 22, pp. 4671-4682, Nov. 2015.
[3] D. Tsonev, S. Videv, and H. Haas, "Light fidelity (Li-Fi): towards all-optical networking", Proc. SPIE 9007, Broadband Access Communication Technologies VIII, 2014.
[4] H. Haas, L. Yin, Y. Wang, and C. Chen, "What is Li-Fi?" J. of Lightwave Technology, vol. 34, pp. 1533-1544, 2016.
[5] T. Dobroslav, S. Videv, and H. Haas, "Light fidelity (Li-Fi): towards all-optical networking," Proc. SPIE 9007, Broadband Access Communication Technologies VIII, 11 pp., 2014.
[6] W. Xiping, M. Safari, and H. Haas, "Access point selection for hybrid Li-Fi and Wi-Fi networks," IEEE Trans. on Communications, vol. 65, no. 12, pp. 5375-5385, Dec. 2017.
[7] L. Xuan, R. Zhang, and L. Hanzo, "Cooperative load balancing in hybrid visible light communications and Wi-Fi," IEEE Trans. on Communications, vol. 63, no. 4, pp. 1319-1329, Apr. 2015.
[8] W. Yunlu, D. Ushyantha, A. Basnayaka, and H. Haas, "Dynamic load balancing for hybrid Li-Fi and RF indoor networks," in Proc. IEEE Int. Conf. on Communication Workshop, ICCW'15, pp. 1422-1427, London, UK, 8-12 Jun. 2015.
[9] H. Christopher and J. Yang, "WiGiG: multi-gigabit wireless communications in the 60 GHz band," IEEE Wireless Communications, vol. 18, no. 6, pp. 6-7, Dec. 2011.
[10] W. Xiping, "Two-stage access point selection for hybrid VLC and RF networks," in Proc. IEEE 27th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications, PIMRC'16, 6 pp., Valencia, Spain, 4-8 Sept. 2016.
[11] I. Stefan, H. Burchardt, and H. Haas, "Area spectral efficiency performance comparison between VLC and RF femtocell networks," in Proc. IEEE Int. Conf. on, Communications, ICC'13, pp. 3825-3829, Budapest, Hungary, 9-13 Jun. 2013.
[12] W. Xiping, M. Safari, and H. Haas, "Joint optimization of load balancing and handover for hybrid Li-Fi and Wi-Fi networks," in Proc. IEEE Wireless Communications and Networking Conf., WCNC'17, 5 pp., San Francisco, CA, USA, 19-22 Mar. 2017.
[13] S. Sihua, et al., "An indoor hybrid Wi-Fi-VLC internet access system," in Proc. IEEE 11th Int. Conf. on Mobile Ad Hoc and Sensor Systems, pp. 569-574, Philadelphia, PA, USA, 28-30 Oct.. 2014.
[14] A. Basnayaka, D. Ushyantha, and H. Haas, "Hybrid RF and VLC systems: improving user data rate performance of VLC systems," in Proc. IEEE 81st Vehicular Technology Conf. (VTC Spring), 5 pp., Glasgow, UK, 11-14 May 2015.
[15] L. Lu, Y. Zhang, B. Fan, and H. Tian, "Mobility-aware load balancing scheme in hybrid VLC-LTE networks," IEEE Communications Letters, vol. 20, no. 11, pp. 2276-2279, Nov. 2016.
[16] K. Abdallah, et al., "A hybrid RF-VLC system for energy efficient wireless access," IEEE Trans. on Green Communications and Networking, vol. 2, no. 4, pp. 932-944, Dec. 2018.
[17] A. Omar and R. Hingst, "Improving the retailer industry performance through RFID technology: a case study of wal-mart and metro group," Cases on Quality Initiatives for Organizational Longevity. IGI Global, pp. 196-220, 2018.
[18] S. Kapp, "802.11a: More bandwidth without the wire," IEEE Internet Computing, vol. 6, pp. 75-79, Jul./Aug. 2002.
[19] W. Francesc, S. Barrachina-Muñoz, C. Cano, I. Selinis, and B. Bellalta, "Spatial reuse in IEEE 802.11 ax WLANs," Computer Communications, vol. 170, pp. 65-83, Mar. 2021.
[20] Y. Perwej, "The next generation of wireless communication using Li-Fi (light fidelity) technology," J. of Computer Networks, vol. 4, no. 1, pp. 20-29, 2017.
[21] D. Tsonev, S. Videv, and H. Haas, " Towards a 100 Gb/s visible light wireless access network," Optics Express, vol. 23, no. 2, pp. 1627-1637, 26 Jan. 2015.
[22] -، وایمکس (WiMAX)، https://noktestan.blogfa.com/post/22
[23] W. Yunlu, et al., "Optimization of load balancing in hybrid LiFi/RF networks," IEEE Trans. on Communications, vol. 65, no. 4, pp. 1708-1720, Apr. 2017.
[24] W. Xiping, C. Chen, and H. Haas, "Mobility management for hybrid Li-Fi and Wi-Fi networks in the presence of light-path blockage," in Proc. IEEE 88th Vehicular Technology Conf. (VTC-Fall), 5 pp. 1-5, Chicago, IL, USA, 27-28 Aug. 2018.
[25] O. Mohanad, A. M. Salhab, S. A. Zummo, and M. S. Alouini, "Joint load balancing and power allocation for hybrid VLC/RF networks," in Proc. IEEE Global Communications Conf., GLOBECOM '17, 6 pp., Singapore, 4-8 Dec. 2017.
[26] Z. L. Jie, J. I. Hong, L. I. Xi, and Y. W. Tang, "Optimal resource allocation scheme for cognitive radio networks with relay selection based on game theory," The J. of China Universities of Posts and Telecommunications, vol. 19, no. 6, pp. 25-62, Dec. 2012.
[27] C. Tsao, Y. T. Wu, W. Liao, and J. C. Kuo, "Link duration of the random way point model in mobile ad hoc networks," in Proc. IEEE Wireless Communications and Networking Conf., WCNC'06, pp. 367-371, Las Vegas, NV, USA, 3-6Apr. 2006.
[28] A. Souri, A. Hussien, M. Hoseyninezhad, and M. Norouzi, "A systematic review of IoT communication strategies for an efficient smart environment," Trans. on Emerging Telecommunications Technologies, vol. 33, no. 3, Article ID: e3736, Mar. 2019.
[29] S. Murugaveni and K. Mahalakshmi, "Optimal frequency reuse scheme based on cuckoo search algorithm in Li-Fi fifth-generation bidirectional communication," IET Communications, vol. 14, no. 15, pp. 2554-2563, Sept. 2020.
[30] E. Masoumeh, M. Ghobaei-Arani, and A. Shahidinejad, "Resource provisioning for IoT services in the fog computing environment: an autonomic approach," Computer Communications, vol. 161, pp. 109-131, Sept. 2020.
[31] L. Si-Phu, et al., "Enabling wireless power transfer and multiple antennas selection to IoT network relying on NOMA," Elektronika ir Elektrotechnika, vol. 26, no. 5, pp. 59-65, 2020.
[32] O. Mohanad, A. N. Salhab, S. A. Zummo, and M. S. Alouini, "Joint optimization of power allocation and load balancing for hybrid VLC/RF networks," J. of Optical Communications and Networking, vol. 10, no. 5, pp. 553-562, May 2018.
[33] A. Sudha, et al., "SDN-assisted efficient LTE-Wi-Fi aggregation in next generation IoT networks," Future Generation Computer Systems, vol. 107, pp. 898-908, Jun. 2020.
[34] Z. Wei, et al., "A self-adaptive AP selection algorithm based on multi-objective optimization for indoor Wi-Fi positioning," IEEE Internet of Things J., vol. 8, no. 3, pp. 1406-1416, 1 Feb. 2020.
[35] M. Soraya, et al., "Wireless system selection with spectrum database for IoT," in Proc. IEEE Int. Conf. on Information Networking, ICOIN'21, pp. 203-208, Jeju Island, South Korea, 13-16 Jan. 2021.
[36] P. Bhanu and J. Malhotra, "QAAs: QoS provisioned artificial intelligence framework for AP selection in next-generation wireless networks," Telecommunication Systems, vol. 76, pp. 233-249, Aug. 2021.
[37] R. Ahmad and A. Srivastava, "Optimized user association for indoor hybrid Li-Fi Wi-Fi network," in Proc. IEEE 21st Int. Conf. on Transparent Optical Networks, ICTON'19, 5 pp., Angers, France, 9-13 Jul. 2019.
[38] N. Omar, "IoT and RFID in supply chain: benefits, barriers and analysis," International Journal of Research Publication and Reviews, vol. 3, no 2., pp 334-358, Feb 2022.
[39] M. Ahrabi, et al., "Mobility aware load balancing using Kho-Kho optimization algorithm for hybrid Li-Fi and Wi-Fi network," Wireless Networks, vol. 30, pp. 5111-5125, 2024.
[40] M. L. Littman, "Markov games as a framework for multi-agent reinforcement learning," in Proc. of the Eleventh International Conference, Rutgers University, pp. 157-163, New Brunswick, NJ, USA, 10-13 Jul. 1994.
[41] W. Y. Liu, K. Yue, T. Y. Wu, and M. J. Wei, "An approach for multi-objective categorization based on the game theory and Markov process," Applied Soft Computing, vol. 11, no. 6, pp. 4087-4096, Sept. 2011.
[42] J. Hao, Y. Xue, M. Chandramohan, Y. Liu, and J. Sun, "An adaptive Markov strategy for effective network intrusion detection," in Proc. IEEE 27th Int. Conf. on Tools with Artificial Intelligence, ICTAI'15, pp. 1085-1092, Vietri sul Mare, Italy, 9-11 Nov. 2015.
[43] W. Xiaofeng and T. Sandholm, "Reinforcement learning to play an optimal Nash equilibrium in team Markov games," in Proc. Advances in Neural Information Processing Systems, NIPS'02, 2002.
[44] L. Cheng, D. Ma, and H. Zhang, "Optimal strategy selection for moving target defense based on Markov game," IEEE Access, vol. 5, pp. 156-169, 2017.