طراحی بهینه و تحلیل تمامموج جاذبهای فرامادهای پهنبانددر طیف نور مرئی
محورهای موضوعی : مهندسی برق و کامپیوترمرتضی نظری 1 , امیر حبیبزاده شریف 2 * , محمد اسکندری 3
1 - دانشگاه صنعتی سهند
2 - دانشگاه صنعتی سهند
3 - دانشگاه صنعتی سهند
کلید واژه: جاذب, پهنباند, فراماده, نور مرئی, تحلیل تمامموج,
چکیده مقاله :
در این مقاله، طراحی بهینه، شبیهسازی عددی و تحلیل تمامموج دو جاذب فرامادهای پهنباند در فرکانسهای فروسرخ، نور مرئی و فرابنفش از طیف نور خورشید ارائه شدهاند. این جاذبهای مسطح، متشکل از دو لایه هادی و یک لایه عایق میانی هستند. نتایج حاصل از شبیهسازیهای عددی مبتنی بر روش انتگرالگیری متناهی نشان دادهاند که عملکرد جاذبهای طراحیشده مستقل از قطبش و زوایای تابش سمتی و ارتفاع موج تابشی است. جاذبهای پیشنهادی دارای میزان جذب بیش از 92% در محدوده نور مرئی هستند؛ لذا این جاذبها میتوانند به منظور برداشت انرژی نور خورشید مورد استفاده قرار گیرند.
In this paper, optimum design, numerical simulation and full-wave analysis of two broad-band metamaterial absorbers have been presented in the infrared, visible light, and ultraviolet frequencies of the sunlight spectrum. These planar absorbers consist of two conductive layers and an intermediate insulating layer. The simulations results obtained by the finite integration technique have shown that performance of the designed absorbers is independent of the incident wave polarization and its elevation and azimuth angles. The proposed absorbers have an absorption of more than 92% in the visible light range. Therefore, these absorbers can be used to harvest the energy of sunlight
[1] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.
[2] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, no. 18, Article ID: 3966, Oct. 2000.
[3] N. Garcia, "Left-handed materials do not make a perfect lens," Physical Review Letters, vol. 88, no. 20, Article ID: 207403, May 2002.
[4] W. Cai, "Optical cloaking with metamaterials," Nature Photonics, vol. 1, no. 4, pp. 224-227, Apr. 2007.
[5] D. Schurig, "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, no. 5801, pp. 977-980, Nov. 2006.
[6] Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, "Dual-band circular polarizer based on simultaneous anisotropy and chirality in planar metamaterial," Scientific Reports, vol. 8, no. 1, pp. 1-7, Jan. 2018.
[7] E. Unal, "Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications," J. of Materials Science: Materials in Electronics, vol. 26, no. 12, pp. 9735-9740, Dec. 2015.
[8] C. Sabah, et al., "Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application," Optics Communications, vol. 322, pp. 137-142, Jul. 2014.
[9] S. Ramya and I. Srinivasa Rao, "Design of new metamaterial absorber with triple band for radar cross section reduction," in Proc. 5th Int. Conf. on Advances in Computing and Communications, ICACC'15, pp. 303-306, Kochi, India, 2-4 Sept. 2015.
[10] M. Bağmancı et al., "Broad-band polarization-independent metamaterial absorber for solar energy harvesting applications," Physica E: Low-Dimensional Systems and Nanostructures, vol. 90, pp. 1-6, Jun. 2017.
[11] Z. Su, J. Yin, and X. Zhao, "Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption," Scientific Reports, vol. 5, Article ID: 16698, 9 pp., Nov. 2015.
[12] M. Bagmanci, et al., "Solar energy harvesting with ultra-broadband metamaterial absorber," International J. of Modern Physics B, vol. 33, no. 8, Article ID: 1950056, Mar. 2019.
[13] M. M. K. Shuvo, M. I. Hossain, S. Rahman, S. Mahmud, S. S. Islam, and M. T. Islam, "A wide-angle, enhanced oblique incidence, bend-able metamaterial absorber employed in visible region with a sun shape resonator," IEEE Access, vol. 9, pp. 126466-126480, 2021.
[14] P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Physical Review B, vol. 9, no. 12, Article ID: 5056, Jun. 1974.
[15] G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Optics Communications, vol. 163, no. 1-3, pp. 95-102, May 1999.